Products

Products

CIQTEK is the manufacturer and global supplier of high-performance scientific instruments, such as Electron Microscopes, Electron Paramagnetic Resonance (Electron Spin Resonance), Gas Adsorption Analyzers, Scanning NV Microscopes, etc.
Campo di applicazione
Applicazioni
CIQTEK EPR200M consegnato all'Università Nazionale di Singapore
CIQTEK EPR200M consegnato all'Università Nazionale di Singapore
La spettroscopia di risonanza paramagnetica elettronica da banco CIQTEK in banda X  EPR200M  è stata consegnata con successo al gruppo del Prof. Chen Xiaoyuan presso l'Università Nazionale di Singapore (NUS).   CIQTEK EPR aiuta la ricerca sull'integrazione della diagnosi e del trattamento Fondata nel 1905, l'Università Nazionale di Singapore (NUS) è ​​una delle migliori università di ricerca di Singapore e si colloca tra i migliori ricercatori al mondo nei campi della chimica e della scienza dei materiali. La principale direzione di ricerca del gruppo del Prof. Chen Xiaoyuan, che ha introdotto il GSI Quantum EPR200M , è l'integrazione diagnostica e terapeutica. La ricerca utilizza la nanotecnologia per ottenere una somministrazione precisa di farmaci, inclusi farmaci a piccole molecole, peptidi e mRNA, ecc. In combinazione con la tecnologia di imaging multimodale, il gruppo valuta la distribuzione tissutale e il processo farmacocinetico dei farmaci in vivo e, infine, realizza l'integrazione di diagnosi e trattamento.   Jianhua Zou, la persona responsabile del team di progetto, ha dichiarato: La stabilità, l'indice di sensibilità e l'accuratezza dei dati del prodotto Quantum EPR200M di Guoyi sono pienamente in linea con i requisiti dei test sperimentali del team di progetto. Il team utilizzerà il dispositivo per testare la generazione o l'eliminazione di una varietà di specie reattive dell'ossigeno, come l'ossigeno monoclino, i radicali superossido, i radicali idrossilici, ecc. Misurando i cambiamenti nei parametri del segnale di queste sostanze radicaliche, l'EPR può dinamicamente e monitorare quantitativamente l'aumento o la diminuzione della loro concentrazione nei campioni biologici, in modo da testare l'efficacia delle sostanze antiossidanti nell'eliminazione delle specie reattive dell'ossigeno.   Spettroscopia EPR da banco in banda X | EPR200M L' EPR200M è uno spettrometro a risonanza paramagnetica elettronica da banco di nuova progettazione e progettazione. Basato su elevata sensibilità, elevata stabilità e una varietà di scenari sperimentali, fornisce un'esperienza conveniente, a bassa manutenzione, semplice e facile da usare per ogni utente sperimentale EPR.
Rilevamento di contaminanti ambientali - Applicazioni EPR (ESR).
Rilevamento di contaminanti ambientali - Applicazioni EPR (ESR).
Essendo una delle crisi globali, l’inquinamento ambientale sta influenzando la vita e la salute umana. Esiste una nuova classe di sostanze dannose per l'ambiente tra gli inquinanti dell'aria, dell'acqua e del suolo: i radicali liberi persistenti per l'ambiente (EPFR). Gli EPFR sono onnipresenti nell’ambiente e possono indurre la generazione di specie di ossidi reattivi (ROS), che causano danni alle cellule e al corpo e sono una delle cause del cancro e hanno forti effetti di rischio biologico. La tecnologia di risonanza paramagnetica elettronica (EPR o ESR) è in grado di rilevare gli EPFR e quantificarli per individuare la fonte del pericolo e risolvere il problema sottostante.     Cosa sono gli EPFR   Gli EPFR sono una nuova classe di sostanze a rischio ambientale proposte rispetto alla tradizionale preoccupazione dei radicali liberi di breve durata. Possono esistere nell'ambiente da decine di minuti a decine di giorni, hanno una lunga durata e sono stabili e persistenti. La sua stabilità si basa sulla stabilità strutturale, non è facile da decomporre ed è difficile reagire tra loro per scoppiare. La sua persistenza si basa sull'inerzia per cui non è facile reagire con altre sostanze nell'ambiente, quindi può persistere nell'ambiente. Gli EPFR comuni sono ciclopentadienile, semichinone, fenossi e altri radicali.   EPFR comuni     Da dove provengono gli EPFR?   Gli EPFR si trovano in un'ampia gamma di ambienti ambientali, come il particolato atmosferico (ad esempio PM 2,5), le emissioni delle fabbriche, il tabacco, il coke di petrolio, il legno e la plastica, i particolati derivanti dalla combustione del carbone, le frazioni solubili nei corpi idrici e i terreni contaminati da sostanze organiche, ecc. Gli EPFR hanno un'ampia gamma di percorsi di trasporto nei mezzi ambientali e possono essere trasportati attraverso l'ascesa verticale, il trasporto orizzontale, la deposizione verticale sui corpi idrici, la deposizione verticale sulla terra e la migrazione verso terra dei corpi idrici. Nel processo di migrazione possono essere generati nuovi radicali reattivi che influenzano direttamente l'ambiente e contribuiscono alle fonti naturali di inquinanti.   Formazione e trasferimento multimediale degli EPFR (Inquinamento ambientale 248 (2019) 320-331)     Applicazione della tecnica EPR per la rilevazione degli EPFR   L'EPR (ESR) è l'unica tecnica di spettroscopia d'onda in grado di rilevare e studiare direttamente sostanze contenenti elettroni spaiati e svolge un ruolo importante nel rilevamento di EPFR grazie ai suoi vantaggi come l'elevata sensibilità e il monitoraggio in situ in tempo reale. Per la rilevazione degli EPFR, la spettroscopia EPR (ESR) fornisce informazioni sia nella dimensione spaziale che temporale. La dimensione spaziale si riferisce agli spettri EPR che possono dimostrare la presenza di radicali liberi e ottenere informazioni sulla struttura molecolare, ecc. Il test EPR conse...
Studio dei segnali EPR nei coralli - Applicazioni EPR (ESR).
Studio dei segnali EPR nei coralli - Applicazioni EPR (ESR).
Il nome corallo deriva dall'antico persiano sanga (pietra), che è il nome comune della comunità dei vermi del corallo e del suo scheletro. I polipi del corallo sono coralli del phylum Acanthozoa, con corpi cilindrici, chiamati anche rocce vive per la loro porosità e crescita ramificata, che possono essere abitati da molti microrganismi e pesci. Prodotto principalmente nell'oceano tropicale, come il Mar Cinese Meridionale. La composizione chimica del corallo bianco è principalmente CaCO 3  e contiene materia organica, chiamata di tipo carbonato. Il corallo dorato, blu e nero è composto da cheratina, chiamata tipo cheratina. Il corallo rosso (incluso il rosa, il rosso carne, il rosa rosso, dal rosso chiaro al rosso intenso) contiene sia CaCO 3  che una maggiore quantità di cheratina. Corallo secondo le caratteristiche della struttura scheletrica. Può essere suddiviso in corallo a piastre, corallo a quattro colpi, corallo a sei colpi e corallo a otto colpi in quattro categorie, il corallo moderno è principalmente le ultime due categorie. Il corallo è un vettore importante per registrare l'ambiente marino, poiché la determinazione della paleoclimatologia, dell'antico cambiamento del livello del mare e del movimento tettonico e altri studi hanno un significato importante.   La risonanza paramagnetica elettronica (EPR o ESR) è uno strumento importante per studiare la materia degli elettroni spaiati, che funziona misurando i salti del livello energetico degli elettroni spaiati a frequenze di risonanza specifiche in un campo magnetico variabile. Attualmente, le principali applicazioni dell'EPR nell'analisi dei coralli sono l'analisi e la datazione dell'ambiente marino.  Ad esempio, il segnale EPR di Mn 2+  nei coralli è correlato al paleoclima. Il segnale EPR di Mn 2+  è ampio durante il periodo caldo e diminuisce bruscamente quando c'è un forte raffreddamento. Come una tipica roccia carbonatica marina, i coralli sono influenzati dalle radiazioni naturali producendo difetti reticolari per generare segnali EPR, quindi possono essere utilizzati anche per la datazione e la cronologia assoluta delle rocce carbonatiche marine. Gli spettri EPR dei coralli contengono una grande quantità di informazioni sulla concentrazione di elettroni spaiati intrappolati da difetti reticolari e di impurità nel campione, sulla composizione minerale e di impurità del campione e quindi informazioni sull'età di formazione e sulle condizioni di cristallizzazione del campione. essere ottenuti contemporaneamente.   Successivamente, il segnale EPR nel corallo verrà analizzato utilizzando una spettroscopia EPR100 CIQTEK in banda X EPR (ESR) per fornire informazioni sulla composizione e sui posti vacanti dei difetti nel corallo.   CIQTEK Banda X EPR100     Campione sperimentale Il campione è stato prelevato da corallo bianco nel Mar Cinese Meridionale, trattato con acido cloridrico diluito 0,1 mol/L, frantumato con un mortaio,...
Articolo approvato da JACS! CIQTEK EPR contribuisce a 27 pubblicazioni di ricerca di alto livello
Articolo approvato da JACS! CIQTEK EPR contribuisce a 27 pubblicazioni di ricerca di alto livello
Siamo lieti di annunciare che i prodotti dello spettrometro EPR CIQTEK hanno contribuito a  27  pubblicazioni di ricerca di alto livello  fino ad oggi!     Uno dei risultati selezionati    Riduzione del diazoto catalizzata da vanadio ad ammoniaca tramite un intermedio [V]═NNH 2  . Giornale dell'American Chemical Society (2023) Wenshuang Huang, Ling-Ya Peng, Jiayu Zhang, Chenrui Liu, Guoyong Song, Ji-Hu Su, Wei-Hai Fang, Ganglong Cui e Shaowei Hu     Astratto   L'atmosfera terrestre è ricca di N 2  (78%), ma l'attivazione e la conversione dell'azoto sono state un compito impegnativo a causa della sua inerzia chimica. L'industria dell'ammoniaca utilizza condizioni di alta temperatura e alta pressione per convertire N 2  e H 2  in NH 3  sulla superficie dei catalizzatori solidi. In condizioni ambientali, alcuni microrganismi possono legare e convertire N 2  in NH 3  tramite enzimi di fissazione dell'azoto basati su Fe(Mo/V). Sebbene siano stati fatti grandi progressi nella struttura e negli intermedi degli enzimi di fissazione dell'azoto, la natura del legame dell'N 2  al sito attivo e il meccanismo dettagliato della riduzione dell'N 2  rimangono incerti.  Sono stati condotti vari studi sull'attivazione di N 2 con complessi di metalli di transizione per comprendere meglio il meccanismo di reazione e per sviluppare catalizzatori per la sintesi dell'ammoniaca in condizioni blande. Tuttavia, finora, la conversione catalitica di N 2  in NH 3  mediante complessi di metalli di transizione rimane una sfida. Nonostante il ruolo cruciale del vanadio nella fissazione biologica dell'azoto, esistono pochi complessi di vanadio ben definiti che possono catalizzare la conversione di N 2  in NH 3 . In particolare, gli intermedi V(NxHy) ottenuti dalle reazioni di trasferimento protone/elettrone di N 2 legato  rimangono sconosciuti. In questo documento, questo articolo riporta la riduzione catalizzata dall'azoto ad ammoniaca catalizzata dal complesso di vanadio metallico e il primo isolamento e caratterizzazione di un intermedio del complesso idrazidico neutro ([V]=NNH 2 ) da un sistema attivato da azoto, con il processo di conversione ciclica simulato da la riduzione del complesso amminico del vanadio protonato ([V]-NH 2 ) per ottenere un composto di azoto e rilascio di ammoniaca. Questi risultati forniscono intuizioni senza precedenti sul meccanismo di riduzione dell'N2 associato  agli enzimi che fissano l'azoto FeV combinando calcoli teorici per chiarire la possibile conversione dell'azoto in ammoniaca attraverso la via distale in questo sistema catalitico.   Il gruppo del Prof. Dr. Shaowei Hu dell'Università Normale di Pechino si dedica allo sviluppo di complessi di metalli di transizione per l'attivazione di piccole molecole inerti. Recentemente, in collaborazione con il gruppo del Prof. Dr. Ganglong Cui, abbiamo riportato la riduzion...
Quantificazione relativa e assoluta - Applicazioni EPR (ESR).
Quantificazione relativa e assoluta - Applicazioni EPR (ESR).
La tecnica di risonanza paramagnetica elettronica (EPR o ESR) è l'unico metodo disponibile per rilevare direttamente gli elettroni spaiati nei campioni. Tra questi, il metodo quantitativo EPR (ESR) può fornire il numero di spin elettronici spaiati in un campione, che è essenziale per studiare la cinetica di reazione, spiegare il meccanismo di reazione e le applicazioni commerciali. Pertanto, ottenere i numeri di spin degli elettroni spaiati dei campioni mediante tecniche di risonanza paramagnetica elettronica è stato un tema caldo di ricerca.  Sono disponibili due principali metodi di risonanza paramagnetica elettronica quantitativa: EPR quantitativo relativo (ESR) e EPR quantitativo assoluto (ESR).     Metodo EPR quantitativo relativo (ESR).   Il metodo EPR quantitativo relativo si ottiene confrontando l'area integrata dello spettro di assorbimento EPR di un campione sconosciuto con l'area integrata dello spettro di assorbimento EPR di un campione standard. Pertanto, nel metodo EPR quantitativo relativo, è necessario introdurre un campione standard con un numero noto di spin. La dimensione dell'area integrata dello spettro di assorbimento EPR non è solo correlata al numero di spin elettronici spaiati nel campione, ma anche alle impostazioni dei parametri sperimentali, alla costante dielettrica del campione, alla dimensione e alla forma del campione e la posizione del campione nella cavità risonante. Pertanto, per ottenere risultati quantitativi più accurati nel metodo EPR quantitativo relativo, il campione standard e il campione sconosciuto devono essere di natura simile, simili per forma e dimensione e nella stessa posizione nella cavità risonante.   Fonti di errore EPR quantitative     Metodo EPR quantitativo assoluto  (ESR).   Il metodo EPR quantitativo assoluto significa che il numero di spin elettronici spaiati in un campione può essere ottenuto direttamente mediante test EPR senza utilizzare un campione standard. Negli esperimenti EPR quantitativi assoluti, per ottenere direttamente il numero di spin elettronici spaiati in un campione, il valore dell'area integrale quadratica dello spettro EPR (solitamente lo spettro differenziale del primo ordine) del campione da testare, i parametri sperimentali, sono necessari il volume del campione, la funzione di distribuzione della cavità di risonanza e il fattore di correzione. Il numero assoluto di spin elettronici spaiati nel campione può essere ottenuto direttamente ottenendo prima lo spettro EPR del campione attraverso il test EPR, quindi elaborando lo spettro differenziale di primo ordine EPR per ottenere il valore dell'area integrata di secondo grado e quindi combinando il parametri sperimentali, volume del campione, funzione di distribuzione della cavità risonante e fattore di correzione.   Spettroscopia di risonanza paramagnetica elettronica CIQTEK   La quantificazione assoluta degli spin degli elettroni spaiati della spettroscopia CIQTE...
CIQTEK EPR (ESR) potenzia la ricerca sui sensori di nanospin
CIQTEK EPR (ESR) potenzia la ricerca sui sensori di nanospin
Basati su proprietà quantistiche, i sensori di spin degli elettroni hanno un’elevata sensibilità e possono essere ampiamente utilizzati per sondare varie proprietà fisico-chimiche, come il campo elettrico, il campo magnetico, la dinamica molecolare o proteica e le particelle nucleari o di altro tipo. Questi vantaggi unici e i potenziali scenari applicativi rendono attualmente i sensori basati sullo spin una direzione di ricerca calda. Sc 3 C 2 @C 80  ha uno spin elettronico altamente stabile protetto da una gabbia di carbonio, adatta per il rilevamento dell'adsorbimento di gas all'interno di materiali porosi. Py-COF è un materiale strutturale organico poroso emerso di recente con proprietà di adsorbimento uniche, che è stato preparato utilizzando un blocco costitutivo autocondensante con un gruppo formile e un gruppo amminico. preparato con una dimensione teorica dei pori di 1,38 nm. Pertanto, un'unità di metallofullerene Sc 3 C 2 @C 80  (di dimensioni pari a circa 0,8 nm) può entrare in uno dei nanopori di Py-COF.   Taishan Wang, ricercatore presso l'Istituto di Chimica dell'Accademia Cinese delle Scienze, ha sviluppato un sensore di nanospin basato sul fullerene metallico per rilevare l'adsorbimento di gas all'interno di una struttura organica porosa. Il fullerene metallico paramagnetico, Sc 3 C 2 @C 80 , è stato incorporato nei nanopori di una struttura organica covalente a base di pirene (Py-COF). L'N 2、CO、CH 4、CO 2、C 3 H 6  e C 3 H 8 adsorbiti  all'interno del Py-COF incorporato con la  sonda spin Sc 3 C 2 @C 80 sono stati registrati utilizzando la tecnica EPR (CIQTEK EPR200-Plus ). È stato dimostrato che i segnali EPR del Sc 3 C 2 @C 80 incorporato  erano regolarmente correlati con le proprietà di adsorbimento del gas del Py-COF. I risultati dello studio sono stati pubblicati su Nature Communications con il titolo "Sensore di nano spin incorporato per il sondaggio in situ dell'adsorbimento di gas all'interno di strutture organiche porose".     Sondaggio delle proprietà di adsorbimento del gas di Py-COF utilizzando lo spin molecolare di Sc 3 C 2 @C 8     Nello studio, gli autori hanno utilizzato un metallofullerene con proprietà paramagnetiche, Sc 3 C 2 @C 80  (~ 0,8 nm di dimensioni), come sonda di spin incorporata in un nanoporo di COF a base di pirene (Py-COF) per rilevare l'adsorbimento di gas all'interno di Py-COF. Quindi, le proprietà di adsorbimento di Py-COF per i gas N 2、CO、CH 4、CO 2、C 3 H 6  e C 3 H 8  sono state studiate registrando i  segnali EPR Sc 3 C 2 @C 80 incorporati. È dimostrato che i segnali EPR di Sc 3 C 2 @C 80  seguono regolarmente le proprietà di adsorbimento del gas di Py-COF. E a differenza delle misurazioni isotermiche di adsorbimento convenzionali, questo sensore impiantabile di nanospin è in grado di rilevare l’adsorbimento e il desorbimento del gas mediante monitoraggio in situ in tempo reale. Il sensore nanospin proposto è stato ut...
Doppia risonanza elettrone-elettrone (DEER) nell'analisi della struttura del DNA - Applicazioni EPR (ESR).
Doppia risonanza elettrone-elettrone (DEER) nell'analisi della struttura del DNA - Applicazioni EPR (ESR).
Dagli anni '50, quando Watson e Crick proposero la classica struttura a doppia elica del DNA, il DNA è stato al centro della ricerca nelle scienze della vita. Il numero delle quattro basi nel DNA e il loro ordine di disposizione portano alla diversità dei geni, e la loro struttura spaziale influenza l'espressione genica. Oltre alla tradizionale struttura a doppia elica del DNA, gli studi hanno identificato una speciale struttura del DNA a quattro filamenti nelle cellule umane, il G-quadruplex, una struttura di alto livello formata dal ripiegamento del DNA o dell'RNA ricca di ripetizioni in tandem di guanina (G ), che è particolarmente elevato nelle cellule G-quadruplex che si dividono rapidamente sono particolarmente abbondanti nelle cellule che si dividono rapidamente (ad esempio, le cellule tumorali). Pertanto, i G-quadruplex possono essere utilizzati come bersagli farmacologici nella ricerca antitumorale. Lo studio della struttura del G-quadruplex e della sua modalità di legame agli agenti leganti è importante per la diagnosi e il trattamento delle cellule tumorali.   Rappresentazione schematica della struttura tridimensionale del G-quadruplex. Fonte immagine: Wikipedia   Doppia risonanza elettrone-elettrone (DEER)   Il metodo EPR dipolare pulsato (PDEPR) è stato sviluppato come uno strumento affidabile e versatile per la determinazione della struttura nella biologia strutturale e chimica, fornendo informazioni sulla distanza su scala nanometrica mediante tecniche PDEPR. Negli studi sulla struttura del G-quadruplex, la tecnica DEER combinata con l'etichettatura spin site-directed (SDSL) può distinguere dimeri G-quadruplex di diverse lunghezze e rivelare il modello di legame degli agenti leganti G-quadruplex al dimero. Differenziazione di dimeri G-quadruplex di diverse lunghezze utilizzando la tecnologia DEER Utilizzando Cu(piridina)4 come etichetta di spin per la misurazione della distanza, il complesso planare tetragonale Cu(piridina)4 è stato legato covalentemente al G-quadruplex e alla distanza tra due Cu2+ paramagnetici nel monomero quaternario G π-stacked è stato misurato rilevando le interazioni dipolo-dipolo per studiare la formazione del dimero. [Cu2+@A4] (TTLGGG) e [Cu2+@B4] (TLGGGG) sono due oligonucleotidi con sequenze diverse, dove L indica il ligando. I risultati DEER di [Cu2+@A4]2 e [Cu2+@B4]2 sono mostrati nella Figura 1 e nella Figura 2. Dai risultati DEER, si può ottenere che nei dimeri [Cu2+@A4]2, la distanza media dei singoli Cu2+ -Cu2+ è dA=2,55 nm, l'estremità G-quadruplex 3′ forma il dimero G-quadruplex mediante impilamento coda-coda e l'asse gz di due etichette di spin Cu2+ nel dimero G-quadruplex è allineato parallelamente. La distanza di impilamento [Cu2+@A4]2 π è maggiore (dB-dA = 0,66 nm) rispetto ai dimeri [Cu2+@A4]2. È stato confermato che ciascun monomero [Cu2+@B4] contiene un tetramero G aggiuntivo, un risultato che è pienamente in accordo con le distanze previste. Pertanto, le misurazioni della di...
Batterie agli ioni di litio - Applicazioni EPR (ESR).
Batterie agli ioni di litio - Applicazioni EPR (ESR).
Le batterie agli ioni di litio (LIB) sono ampiamente utilizzate nei dispositivi elettronici, nei veicoli elettrici, nello stoccaggio della rete elettrica e in altri campi grazie alle loro dimensioni ridotte, leggerezza, elevata capacità della batteria, lunga durata e alta sicurezza. La tecnologia di risonanza paramagnetica elettronica (EPR o ESR) può sondare in modo non invasivo l'interno della batteria e monitorare l'evoluzione delle proprietà elettroniche durante la carica e la scarica dei materiali degli elettrodi in tempo reale, studiando così il processo di reazione dell'elettrodo vicino allo stato reale .  Sta gradualmente ricoprendo un ruolo insostituibile nello studio del meccanismo di reazione della batteria.     Composizione e principio di funzionamento della batteria agli ioni di litio   Una batteria agli ioni di litio è costituita da quattro componenti principali: l'elettrodo positivo, l'elettrodo negativo, l'elettrolita e il diaframma. Per funzionare si basa principalmente sul movimento degli ioni di litio tra gli elettrodi positivi e negativi (incorporamento e de-incorporamento).   Fig. 1 Principio di funzionamento della batteria agli ioni di litio   Nel processo di carica e scarica della batteria, i cambiamenti delle curve di carica e scarica sui materiali positivo e negativo sono generalmente accompagnati da vari cambiamenti microstrutturali, e il decadimento o addirittura il fallimento delle prestazioni dopo un lungo ciclo di tempo è spesso strettamente correlato al processo microstrutturale i cambiamenti. Pertanto, lo studio della relazione costitutiva (struttura-prestazioni) e del meccanismo di reazione elettrochimica è la chiave per migliorare le prestazioni delle batterie agli ioni di litio ed è anche il fulcro della ricerca elettrochimica.     Tecnologia EPR (ESR) nelle batterie agli ioni di litio   Esistono vari metodi di caratterizzazione per studiare la relazione tra struttura e prestazioni, tra cui la tecnica della risonanza di spin elettronico (ESR) ha ricevuto sempre più attenzione negli ultimi anni per la sua elevata sensibilità, non distruttiva e monitorabilità in situ. Nelle batterie agli ioni di litio, utilizzando la tecnica ESR, è possibile studiare metalli di transizione come Co, Ni, Mn, Fe e V nei materiali degli elettrodi e può anche essere applicata per studiare gli elettroni nello stato fuori dominio.   L'evoluzione delle proprietà elettroniche (ad esempio, il cambiamento della valenza del metallo) durante la carica e la scarica dei materiali degli elettrodi causerà cambiamenti nei segnali EPR (ESR). Lo studio dei meccanismi redox indotti elettrochimicamente può essere ottenuto monitorando in tempo reale i materiali degli elettrodi, che possono contribuire al miglioramento delle prestazioni della batteria.   Tecnologia EPR (ESR) nei materiali elettrodici inorganici   Nelle batterie agli ioni di litio, i materiali catodici più comunemente utilizz...
Saperne di più
Lasciate un messaggio
Invia
Superiore

Lasciate un messaggio

Lasciate un messaggio
Non esitate a contattarci per maggiori dettagli, richiedere un preventivo o prenotare una demo online! Ti risponderemo il prima possibile.
Invia

Casa

Prodotti

Chiacchierata

contatto